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Negative-energy perturbations in cylindrical equilibria with a radial electric field

G. N. Throumoulopoulos* and D. Pfirsch
Max-Planck-Institut fu¨r Plasmaphysik, EURATOM Association, D-85748 Garching, Germany

~Received 4 August 1997!

The impact of an equilibrium radial electric fieldE on negative-energy perturbations~NEP’s! in cylindrical
equilibria of magnetically confined plasmas is investigated within the framework of Maxwell-drift kinetic
theory. It turns out that for wave vectors with a nonvanishing component parallel to the magnetic field, the
conditions for the existence of NEP’s in equilibria withE50 @G. N. Throumoulopoulos and D. Pfirsch, Phys.
Rev. E53, 2767~1996!# remain valid, while the condition for the existence of perpendicular NEP’s, which are
found to be the most important perturbations, is modified. Forueifu'Ti , a scaling which is satisfied in the
edge region of magnetic confinement systems~f is the electrostatic potential!, the impact ofE on perpendicu-
lar NEP’s depends on the value ofTi /Te , i.e., ~a! for Ti /Te,bc'P/(B2/8p) ~P is the total plasma pressure!
the electric field does not have any effect; and~b! for Ti /Te.bc , a case which is of operational interest in
magnetic confinement systems, the existence of perpendicular NEP’s depends onenE, whereen is the charge
of the particle speciesn. In the latter case, for tokamaklike equilibria andH mode parameters pertaining to the
plasma edge two regimes of NEP’s exist. In the one of them the critical value2

3 of h i[] lnTi /] lnNi plays a
role in the existence of ion NEP’s, as in equilibria withE50, while a critical value ofhe does not occur for
the existence of electron NEP’s. However,E has a ‘‘stabilizing’’ effect on both particle species in that~a! the
portion of particles associated with NEP’s~active particles! is nearly independent of the plasma magnetic
properties, i.e., it is nearly the same in a diamagnetic plasma and in a paramagnetic plasma, while in equilibria
with E50 this portion is much larger in a paramagnetic plasma than in a diamagnetic plasma; and~b! the
fraction of active particles can decrease from the plasma interior to the edge, e.g., for the case of electron
NEP’s in an equilibrium of a diamagnetic plasma, contrary to equilibria withE50. In particular, the fraction
of active electrons decreases with increasinghe and forhe.h0' 4

3 the electric field stabilizes the electrons, in
that the fraction of active electrons becomes smaller than the one corresponding to equilibria withE50. In
addition,E has similar stabilizing effects on electron NEP’s in stellaratorlike equilibria with pressure profiles
identical to those of tokamaklike equilibria, while it results in an increase of the fraction of active ions in
reversed-field-pinchlike equilibria. The present results indicate that the radial electric field reduces the NEP’s
activity in the edge region of tokamaks and stellarators, the reduction of electron NEP’s being more pro-
nounced than that of ion NEP’s.@S1063-651X~97!11811-6#

PACS number~s!: 52.35.Mw, 03.40.Kf
au
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I. INTRODUCTION

Negative-energy waves are potentially dangerous bec
they can lead to either linear instability@1# or nonlinear,
explosive instability @2–20#. Expressions for the secon
variation of the free energyF (2) were derived by Pfirsch an
Morrison @7# for arbitrary perturbations of general equilibr
within the framework of dissipationless Maxwell-Vlasov an
drift kinetic theories. It was also found that negative-ene
perturbations exist in any Maxwell-Vlasov equilibrium
whenever the unperturbed distribution functionf n

(0) of any
particle speciesn deviates from monotonicity and/or isotrop
in the vicinity of a single point, i.e., whenever the conditio

~k•v!S k•

] f n
~0!

]v D .0 ~1!

holds ~in the frame of reference of minimum equilibrium
energy! for any particle speciesn for some position vectorx
and velocityv and for some local vectork. The proof of this

*Permanent address: Section of Theoretical Physics, Physics
partment, University of loannina, GR-451 10 Ioannina, Greece.
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result was based on infinitely strongly localized perturb
tions, which correspond touku→`. This raises the question o
the degree of localization actually required for negativ
energy perturbations~NEP’s! to exist in a certain equilib-
rium. Studying a homogeneous Maxwell-Vlasov plasma@8#,
force-free equilibria with a sheared magnetic field@9# and
general one- and two-dimensional equilibria of magnetica
confined plasmas@10–12#, Correa-Restrepo and Pfirsc
showed that NEP’s exist for any deviation of the equilibriu
distribution function of any of the species from monotonic
and/or isotropy, without having to impose any restricti
conditions onk.

NEP’s which are not strongly localized can be inves
gated more conveniently in the framework of Maxwell-dr
kinetic theory, which eliminates from the outset all perturb
tions with perpendicular wavelengths smaller than the gy
radius. In the context of this theory, for a homogeneous m
netized plasma it was found that NEP’s exist for any wa
vectork with a nonvanishing component parallel to the ma
netic field~parallel and oblique modes! whenever the condi-
tion

v i

] f gn
~0!

]v i
.0 ~2!e-
5979 © 1997 The American Physical Society
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is satisfied for the equilibrium guiding center distributio
function f gn

(0) for some particle speciesn and parallel velocity
v i in the frame of lowest equilibrium energy@7#. For the
more interesting cases of inhomogeneous magnetically
fined plasmas and equilibria depending on just one Carte
coordinatex @17# and cylindrical equilibria with vanishing
electric fields @18,19#, in addition to parallel and oblique
modes for which condition~1! also applies, perpendicula
NEP’s are possible. The latter are the most important per
bations because they can exist even ifv i(] f gn

(0)/]v i),0,
which is satisfied, e.g., for Maxwellian distribution function
for all v i . In plane geometry the pertinent condition is

dP~0!

dx

] f gn
~0!

]x
,0,

whereP(0) is the equilibrium plasma pressure. For tokama
like equilibria with singly peaked pressure profiles the ex
tence of both ion and electron perpendicular NEP’s is as
ciated with the critical value 2

3 of the quantity hn

[] ln Tn /] ln Nn ~Tn is the temperature andNn the density
of particle speciesn! which usually governs the onset of th
temperature gradient driven modes. For cylindrical equilib
an additional regime of NEP’s exists, related to the curvat
of the poloidal magnetic field. Also, for the case of cold-i
equilibria (Ti50) a large portion of electrons is associat
with NEP’s ~active particles!.

The purpose of the present paper is twofold:~a! to inves-
tigate the impact of a radial electric field on NEP’s in cyli
drical equilibria of magnetically confined plasmas, and~b! to
extend the study to equilibria withTiÞ0. The method of
investigation consists in evaluating the general expres
F (2) for the second-order perturbation energy within t
framework of the linearized dissipationless Maxwell-drift k
netic theory. This is the subject of Sec. II. The conditions
the existence of NEP’s are obtained in Sec. III. It turns
that for parallel and oblique perturbations condition~2! re-
mains valid, while the condition for perpendicular NEP
~which remain the most important perturbations! is modified.
To apply the condition for perpendicular NEP’s in equilibr
of magnetic confinement systems the equilibrium equati
are needed, which are derived in Sec. IV. Shearless stel
torlike equilibria are possible with local Maxwellian distr
bution functions, while tokamaklike and reversed-fie
pinchlike equilibria can be obtained from shifted Maxwellia
distribution functions, which imply net toroidal currents. F
these kinds of distribution functions andH mode parameters
pertaining to the plasma edge the condition for the existe
of perpendicular NEP’s is applied in Sec. V, and the effec
E on the threshold value ofhn is examined. In Sec. VI the
impact ofE on the fraction of active particles is investigate
for shearless stellaratorlike, tokamaklike, and reversed-fi
pinchlike analytic equilibria. Our conclusions are summ
rized in Sec. VII.

II. EQUILIBRIUM AND SECOND-ORDER
PERTURBATION ENERGY

We start with a brief outline of the Maxwell-drift kinetic
theory adapted to the needs of the present study. More de
can be found in Ref.@7#.
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The expression for the free energyF (2) upon arbitrary
perturbations of general equilibria is given by

F ~2!5E d3x T0
~2!0, ~3!

where T0
(2)0 is the energy component of the second-ord

energy-momentum tensorTr
(2)l . To derive the tensorTr

(2)l ,
Pfirsch and Morrison@7# used the following modified
Hamilton-Jacobi formalism. LetHn(pi ,qi ,t) be the Hamil-
tonian for particles of speciesn for the perturbed state in a
phase spacep1 ,...,p4 , q1,...,q4, where (q1,q2,q3) are gen-
eralized coordinates so thatx5x(q1,q2,q3) and correspond-
ingly p5p(p1 ,p2 ,p3), wherex is the position vector in nor-
mal space;p4 , q4 is an additional pair of canonical variable
which is needed to describe guiding center motion. L
Hn

(0)(Pi ,Qi) be the equilibrium Hamiltonian in the phas
spaceP1 ,...,P4 , Q1,...Q4, and letSn(Pi ,qi ,t) be a mixed-
variable generating function for a canonical transformat
betweenpi , qi and Pi , Qi . The x, t dependence ofHn is
given via electromagnetic potentialsf(x,t) andA(x,t), the
electric and magnetic fieldsE(x,t) andB(x,t) and their de-
rivatives. The quantitiespi andQi are obtained fromSn as

pi5
]Sn

]qi , Qi5
]Sn

]Pi
, ~4!

andSn must be the solution of the modified Hamilton-Jaco
equation

]Sn

]t
1HnS ]Sn

]qi ,qi ,t D5Hn
~0!S Pi ,

]Sn

]Pi
D . ~5!

The time-independent, zeroth-order solutionSn
(0) of Eq. ~5!,

needed to obtainTr
(2)m , is then simply given by the identity

transformationSn
(0)5(nPiq

i .
The theory can be derived from the Lagrangian

L52(
n
E dq dP wn~Pi ,qi ,t !F]Sn

]t
1HnS ]Sn

]qi ,qi ,t D
2Hn

~0!S Pi ,
]Sn

]Pi
D G2

1

8p E d3x~E22B2!. ~6!

Here, dq dP[dq1...dq4dP1 ...dP4 ; wn are density func-
tions related to theparticle distribution functionsf n , and the
latter are related to the guiding center distribution functio
f gn by Eq.~14! below. The energy-momentum tensor can
obtained by using the Euler-Lagrange equations resul
from the variational principle

dE
t1

t2
L dt50, ~7!

~with wn , Sn , f, and A the quantities to be varied! and
Noether’s theorem. In the context of the linearized theo
one obtains
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Tr
~2!l52(

n
E dq̂̃ dP̃S ]Sn

~1!

]q̃r 2
en

c
Ar

~1!D F f n
~0!S ]Sn

~1!

]q̃k

2
en

c
Ak

~1!D ]2Hn
~0!

] P̃l] P̃k

1 f n
~0!Fts

~1!
]2Hn

~0!

] P̃l]Fts
~0!

1S f n
~0!

]Sn
~1!

] P̃i
D

,i

]Hn
~0!

] P̃l
G22Fmr

~1!(
n
E dq̂̃ dP̃

3F f n
~0!S ]Sn

~1!

]q̃k 2
en

c
Ak

~1!D ]2Hn
~0!

] P̃k]Fml
~0!

1 f n
~0!Fst

~1!
]2Hn

~0!

]Fml
~0!]Fst

~0!G2
1

4p
Fmr

~1!F ~1!ml

1dr
lS (

n
E dq̂̃ dP̃ f n

~0!~Hn
~2!2Hn

~0!~2!!

1
1

16p
Fts

~1!F ~1!tsD . ~8!

Here, the superscripts~0!, ~1!, and ~2! denote equilibrium,
first-order, and second-order quantities; the tilde signi
that the time is included, i.e.,

~ q̃ i !5~ q̃ 0,...,q̃ 4!5~ct,x,q4!,

~ p̃i !5~ p̃0 ,...,p̃4!5~p0 ,p,p4!, cp05
]Sn

]t
,

~Q̃i !5~Q̃0,...,Q̃4!5~ct,x,Q4!,

~ P̃i !5~ P̃0 ,...,P̃4!5~P0 ,p,p4!, P05const,

Hn~ p̃i ,q̃ i !5cp01Hn~p1 ,...,p4 ,q1,...,q4!,

Hn
~0!~ P̃i ,Q̃i !5cP01Hn~P1 ,...,P4 ,Q1,...,Q4!;

dq̂̃ dP̃5dq4dP1 ...dP4 ; Am5(2f,A) with A4[0; Fmn is
the electromagnetic tensor; the symbolC, j

i signifies covariant
derivative of the vectorC with contravariant componentsCi :

C, j
i [

]Ci

]qj 2G j l
i Cl ,

where G j l
i are the Christoffel symbols; the scalar quant

@ f n
(0)(]Sn

(1)/] P̃i)# ,i , which replaces (]/]q̃i)@ f n
(0)(]Sn

(1)/
] P̃i)] in Eq. ~46! of Ref. @7#, results from the contraction in
the tensor@ f n

(0)(]Sn
(1)/] P̃i)# , j .

The HamiltoniansHn for the guiding center motion of a
particle speciesn, which appear inF (2), are obtained from
Littlejohn’s Lagrangian formulation of the guiding cent
theory @21# in the form given by Wimmel@22#:

Ln5S en

c DAn
!
• ẋ2enfn

!, ~9!

with
s

An
!5A1

mnc

en
q4b,

enfn
!5enf1mB1

mn

2
@~q4!21vE

2 #,

vE5c
E3B

B2 ,

E52“f2
1

c

]A

]t
, B5“3A, b5

B

B
.

The Euler-Lagrange equations yieldq45v•b5v i , and the
guiding center velocityẋ5v[vg andq̇4 as functions oft, x,
andq4:

ẋ5v5vgn~ t,x,q4!5
q4

Bni
! Bn

!1
c

Bni
! En

!3b ~10!

and

q̇45V4~ t,x,q4!5
en

mn

1

Bni
! En

!
•Bn

!. ~11!

Here, En
![2“fn

!2(1/c)(]An
!/]t), Bn

![“3An
!, and Bni

!

[Bn
!
•b. The momenta canonically conjugated tox and q4

follow from Eq. ~9!:

p5
]Ln

] ẋ
5

en

c
An

!, p45
]Ln

]q̇4 50. ~12!

Since Eqs.~12! do not containẋ andq̇4, they are constraints
between the momenta and the coordinates. It therefore
lows that Hamilton’s equations based on the usual Hami
nians corresponding to the above non-standard Lagrang
are not the equations of motion. To overcome this difficul
Dirac’s theory of constrained dynamics@23# is applied,
which yields the Dirac Hamiltonians

Hn5enfn
!1vgn•@p2~en /c!An

!#1V4p4 . ~13!

Particular solutions of the equations of motion followin
from the Hamiltonians~13! are the constraints~12!. The dis-
tribution functionsf n(x,q4,p,p4 ,t) must guarantee that thes
constraints are satisfied. As concerns this requirement,
important to note thatp2(en /c)An

!50 and p450 do not
represent special values of some constants of motion. Th
fore, d functions of the constraints are not constants of m
tion either. Butf n must be proportional to suchd functions
and, at the same time, also a constant of motion. Both c
ditions are uniquely satisfied by

f n5d~p4!dS p2
en

c
An

!DBni
! f gn~x,q4,m,t !, ~14!

where the guiding center distribution functionsf gn are con-
stants of motion and solutions of the drift kinetic differenti
equations

] f gn

]t
1vgn•

] f gn

]x
1V4

] f gn

]q4 50. ~15!
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In the present paper cylindrical equilibria are consider
With the coordinatesq1, q2, andq3 specified to be the cy
lindrical coordinatesr , u, andz with unit basis vectorser ,
eu , and ez , the equilibrium vector potential and magnet
field are given by

A~0!5Au
~0!~r !eu1Az

~0!~r !ez ~16!

and

B~0!5Bu
~0!~r !eu1Bz

~0!~r !ez , ~17!

with

1

r
~rAu

~0!!85Bz
~0! , ~Az

~0!!852Bu
~0! , ~18!

where the prime denotes differentiation with respect tor .
The equilibrium electric field can be expressed in terms
the scalar potentialf (0)(r ) as

E~0!52“f~0!52~f~0!!8er . ~19!

For the equilibria defined above, the guiding center veloc
@Eq. ~10!# becomes

vgn
~0!5v ib~0!1v'

~0!

5v ib~0!2
c

enBni
!~0! Fen~f~0!!81m~B~0!!82

env iBn'
!~0!

c

1
mn

2
~vE

~0!2!8G~er3b~0!!, ~20!

where v'
(0)5b(0)3(vgn

(0)3b(0)) is the perpendicular compo
nent ofvgn

(0) consisting of theE3B, “B, curvature, and po-
larization drifts; Bni

!(0)[Bn
!(0)

•b(0) and Bn'
!(0)[b(0)3(Bn

!(0)

3b(0)). For thermal particles it holds thatBni
!(0)'B(0) and

Bn'
!(0)/Bni

!(0)'O(r gn /r 0), where r gn is the thermal Larmor
radius for the particle speciesn andr 0 the macroscopic scal
length.vgn

(0) has nor component, and thereforer is a constant
of motion. Since there is also no force parallel toB(0), an-
other constant of motion is the parallel guiding center vel
ity v i . The guiding center distribution functionsf gn

(0) are
therefore functions ofr , v i , and the magnetic momentm.
From Eq.~11! it follows that V4

(0)50, and hence the Dirac
Hamiltonians@Eq. ~13!# are written in the form

Hn
~0!5enfn

!~0!1vgn
~0!

•@p2~en /c!An
!~0!#. ~21!

The general expression for the second-order perturba
energy@Eq. ~3!# is evaluated for these equilibria and for in
tial perturbationsA(1)50 and Ȧ(1)50. It is also showna
posteriori that one can choose initial perturbations such t
the charge densityr (1) vanishes without changing the pa
ticle contributions to the energy. Thus, choosing pertur
tions of this kind, we can set from the outsetFml

(1)5Ar
(1)

50.
After a lengthy derivation, which can be conducted alo

the lines of that for cylindrical equilibria withE50 reported
in detail in Appendix A of Ref.@19#, F (2) is cast in the
concise form
.

f

y

-

n

t

-

g

F ~2!52(
n
E S~r !dr dv idmH Bni

!~0!

mn
uGn

~1!u2~k•vgn
~0!!

3F ~b!~0!
•k!

] f gn
~0!

]v i
2

k'

vn
!~0!

] f gn
~0!

]r G J . ~22!

Here vn
!(0)[(enBni

!(0))/(cmn), Gn
(1)(r ,q4,m) are arbitrary

first-order quantities relating to the generating functionsSn
(1)

for the perturbations;bn
!(0)[Bn

!(0)/Bni
!(0) ; k5kueu1kzez is

the wave vector lying in magnetic surfaces;ki andk' are its
components parallel and perpendicular toB(0), respectively;
and

S~r ![r E
u0

u01~2p/rku!E
z0

z01~2p/kz!

du dz

is a normalization surface, whereu0 and z0 are constants.
We note thatF (2) depends onGn

(1) only via uGn
(1)u2. The

first-order charge densityr (1) is a v i , m integral over an
expression that is linear inGn

(1) . One can therefore satisf
the relationr (1)50 by a proper distribution of positive an
negative values ofGn

(1) on whichF (2) does not depend.
Compared with the corresponding expression for equi

ria with E(0)50 @Eq. ~37! of Ref. @18##, F (2) contains terms
stemming frombn

!(0) and from theE3B and polarization
drift components ofvgn . In particular, as shown in Sec. II
the E3B drift modifies the condition for the existence o
NEP’s with wave vectors perpendicular toB(0).

III. CONDITIONS FOR THE EXISTENCE
OF NEGATIVE-ENERGY PERTURBATIONS

The derivations in this section are very similar to tho
concerning equilibria withE50 @17–19# so that details need
not be given here. The following conditions must be satisfi
only locally in r , v i andm, and refer to the frame of refer
ence of minimum energy.

Parallel perturbations(k'50): NEP’s exist when

v i

] f gn
~0!

]v i
.0 ~23!

is satisfied for at least one particle species. This condit
which was first derived by Pfirsch and Morrison for a hom
geneous magnetized plasma@7#, agrees with those obtaine
by Correa-Restrepo and Pfirsch for several Maxwell-Vlas
equilibria @8–12#.

Oblique perturbations~kiÞ0 and k'Þ0!: If condition
~23! is satisfied for at least one particle speciesn, only per-
turbations with wave vectors satisfying in addition the re
tions

ki

k'

,min~Ln ,M n! or
ki

k'

.max~Ln ,M n!, ~24!

with

Ln[2
vgn'

~0!

v i
•~er3b~0!!
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and

M n[S 1

vn
!~0!

] f gn
~0!

]r
2

Bn'
!~0!

Bni
!~0!

] f gn
~0!

]v i
D S ] f gn

~0!

]v i
D 21

,

can have negative energy. The orders of magnitude ofLn

andM n depend on the particle energy. For example, if

mnv i
2'mB~0!'uenfu'Tn , ~25!

with f~`!50, it holds that

uLnu'uM nu'
r gn

r 0
!1. ~26!

Relation~26! indicates that condition~24! imposes no essen
tial restriction on the magnitude or the orientation of t
wave vectors associated with NEP’s.

If

v i

] f gn
~0!

]v i
,0, ~27!

a condition which is satisfied at all points of a Maxwellia
distribution function, NEP’s exist if, in addition to Eq.~27!,
it holds that

min~Ln ,M n!,
ki

k'

,max~Ln ,M n!. ~28!

For the scaling~25!, condition~28! implies that

ki

k'

'
r gn

r 0
!1, ~29!

which indicates that the most important NEP’s, in the se
that the less restrictive condition~27! is involved, are asso
ciated with nearly perpendicular wave vectors. It may
noted that for a homogeneous magnetized plasma in the
equilibrium, although condition~27! is satisfied, NEP’s are
not possible becauseM n5Ln50 and therefore condition
~28! is not satisfied. This also follows from condition~23!
which is pertinent for the existence of NEP’s in a homog
neous magnetized plasma and is not satisfied in thermal e
librium, i.e., for Maxwellian distribution functions.

Perpendicular perturbations(ki50): In this case the
second-order perturbation energy@Eq. ~22!# reduces to

F ~2!54p(
n
E dr dv idm S~r !uGn

~1!u2

3
Bni

!~0!

mn
2

Wn'

~B~0!!2 S k'

vn
!~0!D 2

ZnQn , ~30!

with

Zn5
~B~0!!2

4pWn'
Fen

c
v iBn'

!~0!2enf82m~B~0!!82
mn

2
~vE

~0!2!8G
(31)

and
e

e
al

-
ui-

Qn5
] f gn

~0!

]r
2vn

!~0!
Bn'

!~0!

Bn'
!~0!

] f gn
~0!

]v i
, ~32!

where Wn'5mB(0) is the perpendicular particle energ
Equation~30! implies thatF (2),0 for any k' whenever the
condition

ZnQn,0 ~33!

is satisfiedirrespective of the sign ofv i(] f gn
(0)/]v i). There-

fore, there are two regimes of NEP’s which are determin
by the relations

Zn,0

and

Qn.0 ~34!

and

Zn.0

and

Qn,0. ~35!

For the evaluation of conditions~34! and ~35! the equilib-
rium equations are required, which are constructed in S
IV.

IV. QUASINEUTRAL MAXWELL-DRIFT
KINETIC EQUILIBRIUM EQUATIONS

The equilibria must satisfy

“•E~0!54pr~0! ~36!

and

“3B~0!5
4p

c
j ~0!, ~37!

where the charge densityr (0) and current densityj (0) are
expressed self-consistently in terms of the guiding center
tributions functionsf gn

(0) in the context of the Maxwell-drift
kinetic theory@see Eqs.~8.14! and ~8.15! of Ref. @24##. For
the system under consideration, owing to the presence
E(0), the set of equilibrium equations following from Eq
~36! and~37! are rather complicated. For this reason we e
ploy the quasineutral Maxwell-drift kinetic theory which ca
be derived self-consistently by dropping the electric-fie
energy term in the Lagrangian~6!. A similar method was
employed in Refs.@14,20,25#. Consequently, Eq.~36! is re-
placed by the quasineutrality condition, which is explicit
given by

(
n

enE dv idmBni
!~0! f gn

~0!

1(
n

divE dv idmBni
!~0! f gn

~0!
mnc

B~0! ~vgn
~0!2vE

~0!!3b~0!

50, ~38!

and Eq.~37! by
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(
n

enE dv idmBni
!~0! f gn

~0!vgn
~0!

2(
n

c curl E dv idmBni
!~0! f gn

~0!Fmb~0!2
mn

B~0! v i~vgn'
~0!

2vE
~0!!2

mnc

~B~0!!2 ~vgn
~0!2vE

~0!!3E~0!

1
2mn

B~0! $~vgn
~0!2vE

~0!!•vE
~0!%b~0!G

5
c

4p
“3B~0!. ~39!

The first terms on the left-hand sides of Eqs.~38! and ~39!
represent guiding center charge and current density contr
tions, respectively, and the other terms polarization and m
netization contributions. We consider equilibria of the fo
lowing kinds.

~1! The distribution functions are specified to be loc
shifted Maxwellians,

f gn
~0!5S mn

2p D 1/2 Nn
~0!~r !

Tn
~0!~r !3/2

3expH 2
mB~0!~r !11/2mn@v i2Vn

~0!~r !#2

Tn
~0!~r ! J ,

~40!

whereNn
(0) and Tn

(0) are, respectively, the density and tem
perature for particles of speciesn. They can describe cylin
drical tokamaklike, reversed-field-pinchlike, and, forVn

(0)

[0, shearless stellaratorlike plasmas, which are close
thermal equilibrium. For the former equilibria the shift v
locities Vn

(0) satisfy

Vn
~0!

~vn! th
'

r gn

r 0
!1 ~41!

and, as shown later, lead to a nonvanishing ‘‘toroidal c
rent.’’

~2! Since a radial electric field may play a role in theL-H
transition of magnetic confinement systems, e.g., Refs.@26#,
@27#, for the ion electrostatic energy we adopt the scaling

ueif
~0!u'Ti

~0! , f~0!~`!50, ~42!

which is satisfied in the edge region.
Using the above assumptions, neglecting small terms

the orderr gn /r 0 and suppressing the superscript~0! from the
equilibrium quantities, Eq.~38! and theu andz components
of Eq. ~39!, respectively, yield

(
n

enNn50, ~43!

j u5bueiNi~Vi2Ve!1c
bz

B
P852

c

4p
Bz8 , ~44!
u-
g-

l

to

-

of

and

j z5bzeiNi~Vi2Ve!2c
bu

B
P852

c

4p

1

r
~rBu!8, ~45!

where

P[( E dv idmBni
! mB fgn5(

n
NnTn . ~46!

For Vn[0 for all n, Eqs.~44! and~45!, respectively, reduce
to

bz

B
P852

Bz8

4p
~47!

and

bu

B
P852

1

4p

1

r
~rBu!8. ~48!

The solutions of Eqs.~47! and ~48! satisfy the relationBu
5a(Bz /r ), with a5const. They are singular atr 50 and
thereforea50. For Bu[0, Eq. ~48! is satisfied identically,
and the only possible equilibrium, which is described by E
~47!, is a u-pinch or shearless stellaratorlike configurati
with vanishing axial current, a case which is examined
Sec. VI. Multiplying Eqs.~44! and ~45! by the integrating
factors Bz and Bu , respectively, and adding the resultin
equations, one obtains the pressure balance relation

d

dr S P1
B2

8p D1
Bu

2

4pr
50, ~49!

which will be used in place of Eq.~45!.
Summarizing, quasineutral equilibria can be described

the set of Eqs.~43!, ~44!, ~46!, and~49!. Four out of the eight
functions involved must be assigned, e.g.,P(r ), Bz(r ), the
shift velocity differenceVi(r )2Ve(r ) andTi(r ); thenBu(r )
can be obtained from Eq.~49!, Ni(r ) from Eq. ~44!, Ne(r )
from Eq. ~43!, andTe(r ) from Eq. ~46!. Analytic solutions,
which are required for determining the portion of active p
ticles in equilibria of magnetic confinement systems, are c
structed in Sec. VI.

V. PERPENDICULAR NEP’s IN EQUILIBRIA
OF MAGNETIC CONFINEMENT SYSTEMS

In this section condition~33! for the existence of perpen
dicular NEP’s is applied to the equilibria defined in Secs.
and IV. For distribution functions of the form~40! and the
pressure balance relation~49!, the quantityQn @Eq. ~32!#
reduces to

Qn5
Nn8

Nn
Un , ~50!

where

Un[12 2
3 1hne1n1e2n , ~51!

e1n[
Wn'

Tn
S 11

Wni

Wn'
D , ~52!
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e2n[
4p

B2

Wn'

Tn

Nn

Nn8
Rn , ~53!

and

Rn[P81
Bu

2

4pr S 112
Wni

Wn'
D . ~54!

Depending on the value ofTi /Te , the effect ofE on perpen-
dicular NEP’s is examined in the following two regions.

A. Ti /Te<bc'P/„B2/8p…

Assuming the scaling~42! to hold it can be shown that th
pressure gradient and a term relating to the curvature oBu
dominate inZn , i.e.,

Zn'P81
Bu

2

4pr S 112
Wni

Wn'
D5Rn . ~55!

Condition ~33! can be put into the form

Rn

Nn8

Nn
Un,0. ~56!

Relation ~56! is identical to the corresponding one in equ
libria with E50 @relation ~58! of Ref. @18##. For singly
peaked density and the temperature profiles, and there
hn.0 for all n, which is the most common case in equilibr
of magnetic confinement systems, there are two regime
NEPs depending on the sign ofRn @Eq. ~54!#.

1. Rn<0

Condition ~56! implies thatUn,0 must hold. The last
two terms ofUn @Eqs.~51!–~53!# become non-negative an
vanish for Wni→0 and Wn'→0. Consequently,Un,0 is
satisfied whenever

hn. 2
3 . ~57!

The existence of perpendicular ion NEP’s for anyk' is
therefore related to the threshold value of2

3 of the quantity
hn . As discussed in Ref.@17#, this threshold value is sub
critical in the sense that it is lower than the critical val
hn

c'1 for linear stability of temperature-gradient-drive
modes.

2. Rn>0

The condition for the existence of perpendicular NEP
becomesUn.0. In this case the quantityhne1n1e2n can be
either positive or negative, and therefore no restriction
imposed onhn . It may be noted that for plane equilibria
holds thatRn5P8,0 and therefore the second regime
NEP’s is associated with the curvature ofBu .

B. Ti /Te>bc

If the scaling ~42! holds, the termenf8 related to the
E3B drift dominates inZn @Eq. ~31!#, i.e.,
re

of

s

Zn'2
B2

4pWn'

enf8. ~58!

Condition ~33! then becomes

enf8
Nn8

Nn
Un.0. ~59!

Relation ~59! shows that the existence of perpendicu
NEP’s depends on the sign of the particle species charge
the polarity ofE. Henceforth and up to Sec. VI C,EÞ0 will
refer to this case (Ti /Te.bc). In the edge region the radia
electric field is usually negative@26,27#. It is noted here that
the impact of the polarity of an externally induced rad
electric field was investigated experimentally@28#. It was
found that whereas the energy confinement inH modes with
E.0 is at least as good as in those withE,0, the ratio of the
ion confinement time to the energy confinement time is ab
three times lower in the former case. We examine theref
in the following NEP’s for ions and electrons in equilibr
with f8.0.

1. Ions

In this caseenf8 is positive, and condition~59! is satis-
fied wheneverUi,0. Depending on the sign ofRi , there are
two regimes of NEP’s:~a! If Ri,0, Ui,0 is satisfied when-
everh i.

2
3 , and~b! if Ri.0, no restriction is imposed onh i .

It is pointed out, however, that forE50 the condition asso-
ciated with this second regime isUi.0. As shown in Sec.
VI, this difference affects the fraction of active ions.

2. Electrons

Condition ~59! is satisfied wheneverUe.0. This yields

he, 2
3 ~11hee1e1e2e!. ~60!

For cold electrons~Wei→0 and We'→0!, condition ~60!
implies that NEP’s exist wheneverhe, 2

3 . This indicates that
E has a ‘‘stabilizing’’ effect on electron NEP’s for larg
values ofhe . Owing to hot electrons, however, conditio
~60! does not yield an upper threshold value ofhe because
electrons with nonvanishing energy activate NEP’s in
regime wherehe. 2

3 . To determine the value ofhe for which
half of the electrons are active, condition~60! is written in
the form

Ce~r !
Wei

Te
1De~r !

We'

Te
.

3

2
2

1

he
, ~61!

where

Ce~r ![S 11
2

r

Bu
2

B2

Te

Te8
D

and

De~r ![F11
4p

B2

Te

Te8
S P81

Bu
2

4pr D G . ~62!
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For a magnetic confinement system, it holds thatBu
2/B2

'P/(B2/8p)[b, with max b'0.1, and thereforeCe'De
'1. Consequently, condition~61! implies that nearly half of
the electrons are active whenever it holds that 3/221/he
' 3

4 . This yields

he
0' 4

3 . ~63!

Therefore, ifEÞ0, less than half of the electrons are acti
wheneverhe.he

0, and this portion decreases ashe takes
larger values. On the other side, ifE50, more than half of
the electrons are active wheneverhe.he

0, with this portion
increasing ashe takes larger values.

VI. ANALYTIC EQUILIBRIUM SOLUTIONS
AND ACTIVE PARTICLES

In this section the portion of active particles is determin
on the basis of analytic shearless stellaratorlike, tokamak
and reversed-field-pinchlike equilibrium solutions.

A. Shearless stellaratorlike„u pinch… equilibria

We consider the following profiles:

P5P~0!~12r2!, ~64!

Ni5Ni(0)(12r2)j and Ti5Ti(0)(12r2)12j, where r
[r /r 0 , andr 0 corresponds to the plasma surface. Equati
~49! with Bu[0, (nenNn50, andP5(nNnTn , then yield

Bz5Bz0@12b0~12r2!#1/2,
~65!

j5“Bz3ez52
Bz0

r 0
b0

r

@12b0~12r2!#1/2 eu ,

Ne5Ne(0)(12r2)j andTe5Te(0)(12r2)12j. HereBz0 is
the external constant ‘‘toroidal’’ magnetic field,b0
[P(0)/(B2/8p), and the parameterj ~0<j<1! determines
equilibria with different values ofhn , i.e.,

hn[
] ln Tn

] ln Nn
5

12j

j
. ~66!

Ion and electron NEP’s are now examined separately.

1. Ions

Since the magnetic field lines are straight, it holds t
Ri5P8,0, and therefore that ion NEP’s exist only in equ
libria with h i.

2
3 . The pertinent conditionUi,0 becomes

Wi i

Ti
1F11

b

2~12j!
~12r2!G Wi'

Ti
,

3

2
2

1

h i
. ~67!

Relation~67! implies the following.
~1! The portion of active ions increases ash i takes larger

values. In particular, for a flat temperature and peaked d
sity profile there are no active ions; forh i51, one-third of
the thermal ions are active, and forh i52 this fraction be-
comes2

3; for a flat density and a peaked temperature pro
(h i→`), all ions are active;
d
e,

s

t

n-

e

~2! The portion of active ions increases from the cen
r50 to the edge regionr51.

2. Electrons

For E50, the situation is similar to the foregoing one fo
ions. For EÞ0 the condition for the existence of electro
NEP’s is Ue.0, and therefore the fractions of active ele
trons and ions are complementary to each other. Thus
also discussed in Sec. V, the electric field stabilizes elec
NEP’s for he. 4

3 , e.g., for the equilibrium profiles~64!–
~66!, one-third of the thermal electrons are active whenhe
52, while the corresponding fraction for the equilibriu
with E50 is 2

3. In addition, the fraction of active electron
decreasesfrom the center to the edge. This indicates that
the presence ofE self-sustained turbulence associated w
electron NEP’s should be reduced in the edge.

B. Tokamaklike „screw pinch… equilibria

The following profiles correspond to a special solution
Eq. ~49!:

Bz5@Bz
2~0!18pP~0!~12a2!r2#1/2, ~68!

wherea is a parameter which describes the magnetic pr
erties of the plasma, i.e., the plasma is diamagnetic fora,1
and paramagnetic fora.1;

Bu52ApP~0!ar ~69!

is the constant axial current density;Nn5Nn(0)(12r2)j;
and Tn5Tn(0)(12r2)12j, with n5 i ,e. Ion and electron
NEP’s are now examined forhn51, which is close to linear
stability threshold for gradient temperature driven modes

1. Ions

For E50 the portion of active ions is determined by co
ditions ~34! and ~35! which, respectively, become

Wi i

Wi'
,

1

2 S 2

a221D
and

@12 1
2 b~12r2!~a222!#

Wi'

Ti
1@12ba2~12r2!#

Wi i

Ti
,

1

2
~70!

and

Wi i

Wi'
.

1

2 S 2

a221D
and

@12 1
2 b~12r2!~a222!#

Wi'

Ti
1@12ba2~12r2!#

Wi i

Ti
.

1

2
.

~71!

Relations~70! and ~71! imply the following.
~1! The portion of active ions increases witha, i.e., it is

smaller in a diamagnetic system and larger in a paramagn
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system. The particular cases of a strongly diamagn
plasma~a→0!, of an equilibrium with constant ‘‘toroidal’’
magnetic field (a251), and of a paramagnetic plasma (a2

52) are illustrated in Figs. 1, 2, and 3, respectively. T
fractions of active ions are nearly13 for a→0, 1

2 for a251,
and 2

3 for a252. It is noted that fora→0 only the branch
~70!, associated with the threshold valueh i5

2
3 , contributes,

while for a252 exclusively the branch~71! associated with
the curvature of the poloidal field lines contributes.

~2! In all regimes the fraction of active ions increas
from the center to the edge. In Figs. 1, 2, and 3 the do
area stands for the active particles at the center~r50!, while
the area filled by circles for the additional active particles
the edge~r51!.

It is noted here that forE50 similar results hold for elec-
trons. ForEÞ0, active ions obtain from conditionUi,0
~irrespective of the sign ofRi!, which leads to

F12
1

2
b~12r2!~a222!G Wi'

Ti

1@12ba2~12r2!#
Wi i

Ti
,

1

2
. ~72!

Relation~72! implies the following.

FIG. 1. The portion of active ions for a strongly diamagne
plasma with E50 and h i51 which is deduced from Eq.~70!
@a0(r)[11b(12r2)#. The dotted area stands for the active p
ticles at the center~r50!, while the area filled by circles for the
additional active particles at the edge~r51!.

FIG. 2. The portion of active ions for the equilibrium withE50,
h i51, andBz5const, which is deduced from Eqs.~70! and ~71!
@a1(r)[11(b/2)(12r2), b1(r)[12b(12r2)].
ic

e

d

t

~1! The portion of active ions is nearly independent of t
magnetic properties of the plasma; it is approximately1

3 for
any value ofa.

~2! The portion of active ions can either be nearly ind
pendent ofr, e.g., for an equilibrium with constantBz (a2

51) ~Fig. 4! or decreases from the center to the edge, e
for a paramagnetic plasmaa252 ~Fig. 5!, while this portion
always increases for equilibria withE50.

ThusE leads to a reduction of active ions.

2. Electrons

Recalling that the portion of active electrons is the sa
as that of active ions whenE50, and complementary when
EÞ0, respectively, the former portion can be determined
the basis of the foregoing analysis for ions. Thus, in addit
to the stabilizing effect ofE for he. 4

3 , the fraction of active
electrons~a! becomes nearly independent of the magne
properties of the plasma, and~b! can decrease from the cen
ter to the edge, e.g., for the most common case of a diam
netic plasma.

C. Reversed-field-pinchlike„force-free… equilibria

The solution of Eq. ~49! with P850 leads to Bz
5Bz(0)J0(r) and Bu5Bz(0)J1(r), where J0 and J1 are
Bessel functions. These profiles satisfactorily describe
central region of the relaxed state of a reversed-field pi

-

FIG. 3. The portion of active ions for the equilibrium of a par
magnetic plasma withE50 andhe51, which is deduced from Eq
~71! @b2(r)[122b(12r2)#.

FIG. 4. The portion of active ions for the equilibrium withEÞ0,
h i51 andBz5const, which is deduced from Eq.~72! @a4(r)[1
1(b/2)(12r2), b4(r)[12b(12r2)]. The excess portion at the
edge indicated by circles nearly compensates for the excess po
at the center indicated by stars.
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@29#. By appropriately assigningVi(r )2Ve(r ), one can de-
rive equilibria with a variety of density and temperature p
files for which NEP’s exist and a considerable fraction
active ions and electrons are involved. From the equilib
considered it turns out thatE ~a! does not affect the electro
NEP’s, and~b! enhances the fraction of active ions.

As an example, we consider the most common equi
rium with constant density and temperature profiles:

Nn5Nn0 , Tn5Tn0 . ~73!

For E50, with the aid of relation~55!, condition ~33! be-
comes

Wn'

Tn0

Bu
2

rB2 S 112
Wni

Wn'
D,0 ~74!

for any particle speciesn. Therefore there are neither ion no
electron NEP’s.

If EÞ0, NEP’s exist whenever the condition

enf8

Tn0

Bu
2

rB2 S 112
Wni

Wn'
D.0, ~75!

following from relations~33! and~58!, is satisfied. Owing to
the presence of the particle species charge in condition~75!,
for f8.0 all ions are active, while the active electrons a
not affected.

VII. CONCLUSIONS

The impact of a radial electric field on negative-ener
perturbations~NEP’s! in cylindrical equilibria of magneti-
cally confined plasmas was investigated within the fram
work of linearized dissipationless Maxwell-drift kineti
theory. The investigation consisted in evaluating the gen
expression for the second-order perturbation energy der
by Pfirsch and Morrison for the equilibria under consid
ation and for vanishing initial-field perturbations; then t
conditions for the existence of NEP’s were obtained.

The electric fieldE does not affect the following condi

FIG. 5. The portion of active ions for a strongly diamagne
plasma with EÞ0 deduced from Eq.~72! @a5(r)5122b(1
2r2)#. The area filled by stars represents the excess portion a
plasma center.
-
f
a

-

-

al
ed
-

tion for perturbations with wave vectors parallel and obliq
to the equilibrium magnetic field (kiÞ0): If the equilibrium
guiding center distribution functionf gn

(0)(r ,v i ,m) of any spe-
ciesn satisfies the relationv i(] f gn

(0)/]v i).0 locally in r , v i

and m, parallel and oblique NEP’s exist with no essent
restriction onk. The condition for the existence of perpe
dicular NEP’s (ki50), which holds regardless of the sign o
v i(] f gn

(0)/]v i), is modified. Forueifu'Ti the effect ofE on
perpendicular NEP’s depends on the value ofTi /Te , i.e., ~a!
for Ti /Te,bc'P/(B2/8p), the electric field has no effect
and ~b! for Ti /Te.bc , a case which is of operational inte
est in magnetic confinement systems, the existence of
pendicular NEP’s depends on the sign of the particle spe
charge and the polarity ofE @relation ~59!#. For E,0, we
found the following.

~1! For cylindrical tokamaklike equilibria described b
local shifted Maxwellian distribution functions and sing
peaked pressure profiles, there exist two regimes of NE
for both ions and electrons. One regime is associated w
the curvature of the poloidal magnetic field. In the oth
regime the threshold value 2/3 ofh i[] ln Ti /] ln Ni is in-
volved for ion NEP’s, as in equilibria withE50, while a
critical value ofhe does not occur for the existence of ele
tron NEP’s. However,E has the following ‘‘stabilizing’’ ef-
fects on both particle species:

~a! The portion of particles associated with NEP’s~active
particles! is nearly independent of the plasma magnetic pr
erties, i.e., it is nearly the same in a diamagnetic and i
paramagnetic plasma, while in equilibria withE50 this por-
tion is much larger in a paramagnetic than in a diamagn
plasma.

~b! The portion of active particles can be either const
or decreases from the center to the edge, e.g., in the ca
active electrons of a diamagnetic plasma, while it alwa
increases in the corresponding equilibria withE50.

In particular, the fraction of active electrons decreas
with increasinghe and forhe.h0' 4

3 the electric field sta-
bilizes electron NEP’s in the sense that the fraction of act
electrons becomes smaller than the one correspondin
equilibria with E50.

~2! In shearless stellaratorlike equilibria described by
cal Maxwellian distribution functions and pressure profil
identical to those of tokamaklike equilibria,E leads to simi-
lar stabilizing effects on electron NEP’s, that is, it reduc
the fraction of active electrons~a! for he.h0' 4

3 and ~b!
from the center to the edge.

In addition, irrespective of the value ofTi /Te , E does not
affect electron NEP’s in reversed-field-pinchlike equilibri
but ‘‘destabilizes’’ the ion NEP’s in the sense that it e
hances the portion of active ions. For example, for an eq
librium with constant density and temperature profiles
ions are active in the presence ofE, while there are not
active ions whenE50.

The present results indicate that a radial electric fi
leads to a reduction of NEP activity in the edge region
tokamaks and stellarators. For electrons, which may ma
contribute to anomalous transport, this reduction is more p
nounced.

Finally, it may be noted that according to the results
our previous work@18,19# and in the present study, the cu

he
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vature of the poloidal magnetic field is unfavorable in t
sense that it gives rise to an increase of NEP activity. It
be speculated that this is true for an arbitrary magnetic fi
configuration. To check this conjecture, it is interesting
investigate NEP’s in a toroidal equilibrium, e.g., a tokama
in which the toroidal magnetic field is favorably curved o
the inside and unfavorably on the outside of the torus. S
a study might also reveal the effect of toroidicity on oth
aspects of NEP’s, e.g., the threshold valuehn5 2
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