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Negative-energy perturbations in cylindrical equilibria with a radial electric field
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The impact of an equilibrium radial electric fielon negative-energy perturbatio@$EP’s) in cylindrical
equilibria of magnetically confined plasmas is investigated within the framework of Maxwell-drift kinetic
theory. It turns out that for wave vectors with a nonvanishing component parallel to the magnetic field, the
conditions for the existence of NEP’s in equilibria wit=0 [G. N. Throumoulopoulos and D. Pfirsch, Phys.
Rev. E53, 2767(1996] remain valid, while the condition for the existence of perpendicular NEP’s, which are
found to be the most important perturbations, is modified. |[Egp|~T;, a scaling which is satisfied in the
edge region of magnetic confinement systdgss the electrostatic potentjalthe impact ofE on perpendicu-
lar NEP’s depends on the value Bf/ T, i.e.,(a) for T; /T.<B.~P/(B?/8w) (P is the total plasma pressyre
the electric field does not have any effect; gbgifor T;/T.> 8., a case which is of operational interest in
magnetic confinement systems, the existence of perpendicular NEP's depesds avheree, is the charge
of the particle species. In the latter case, for tokamaklike equilibria aHdnode parameters pertaining to the
plasma edge two regimes of NEP’s exist. In the one of them the critical \gadﬂieryiza InT; /o InN; plays a
role in the existence of ion NEP’s, as in equilibria wH0, while a critical value ofp, does not occur for
the existence of electron NEP’s. HowevErhas a “stabilizing” effect on both particle species in tiiak the
portion of particles associated with NER(active particles is nearly independent of the plasma magnetic
properties, i.e., it is nearly the same in a diamagnetic plasma and in a paramagnetic plasma, while in equilibria
with E=0 this portion is much larger in a paramagnetic plasma than in a diamagnetic plasmdn) ahe
fraction of active particles can decrease from the plasma interior to the edge, e.g., for the case of electron
NEP’s in an equilibrium of a diamagnetic plasma, contrary to equilibria ®itt0. In particular, the fraction
of active electrons decreases with increasipand for 7,> 7o~ 3 the electric field stabilizes the electrons, in
that the fraction of active electrons becomes smaller than the one corresponding to equilibia=0ithn
addition,E has similar stabilizing effects on electron NEP’s in stellaratorlike equilibria with pressure profiles
identical to those of tokamaklike equilibria, while it results in an increase of the fraction of active ions in
reversed-field-pinchlike equilibria. The present results indicate that the radial electric field reduces the NEP’s
activity in the edge region of tokamaks and stellarators, the reduction of electron NEP’s being more pro-
nounced than that of ion NEP'ES1063-651X97)11811-9

PACS numbd(is): 52.35.Mw, 03.40.Kf

I. INTRODUCTION result was based on infinitely strongly localized perturba-
tions, which correspond t|—°. This raises the question of
Negative-energy waves are potentially dangerous becausgke degree of localization actually required for negative-
they can lead to either linear instabiliffl] or nonlinear, energy perturbation$NEP’s) to exist in a certain equilib-
explosive instability[2—20. Expressions for the second rium. Studying a homogeneous Maxwell-Vlasov pladih
variation of the free energl(®) were derived by Pfirsch and force-free equilibria with a sheared magnetic fi¢d] and
Morrison[7] for arbitrary perturbations of general equilibria general one- and two-dimensional equilibria of magnetically
within the framework of dissipationless Maxwell-Vlasov and confined plasmag10-12, Correa-Restrepo and Pfirsch
drift kinetic theories. It was also found that negative-energyshowed that NEP’s exist for any deviation of the equilibrium
perturbations exist in any Maxwell-Vlasov equilibrium distribution function of any of the species from monotonicity
whenever the unperturbed distribution functiéfl’ of any ~ and/or isotropy, without having to impose any restricting
particle species deviates from monotonicity and/or isotropy conditions onk.

in the vicinity of a single point, i.e., whenever the condition ~ NEP’s which are not strongly localized can be investi-
gated more conveniently in the framework of Maxwell-drift

Y kinetic theory, which eliminates from the outset all perturba-
(k-v)| k- v >0 (D) tions with perpendicular wavelengths smaller than the gyro-
radius. In the context of this theory, for a homogeneous mag-
holds (in the frame of reference of minimum equilibrium netized plasma it was found that NEP's exist for any wave
energy for any particle species for some position vectax ~ vectork with a nonvanishing component parallel to the mag-
and velocityv and for some local vectdr. The proof of this  netic field (parallel and oblique modgsvhenever the condi-
tion
. . . . . ot
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is satisfied for the equilibrium guiding center distribution ~ The expression for the free energ? upon arbitrary
functionfgf) for some particle speciesand parallel velocity —perturbations of general equilibria is given by

v, in the frame of lowest equilibrium enerdy’]. For the

more interesting cases of inhomogeneous magnetically con- @ 3. —{(2)0

fined plasmas and equilibria depending on just one Cartesian F Zf d> Tg™, ()
coordinatex [17] and cylindrical equilibria with vanishing
electric fields[18,19, in addition to parallel and oblique
modes for which conditio(1) also applies, perpendicular
NEP’s are possible. The latter are the most important pertu
bations because they can exist evenvj{af()/av,)<0,
which is satisfied, e.g., for Maxwellian distribution functions
for all v;. In plane geometry the pertinent condition is

where T(z)0 is the energy component of the second-order
[g£nergy-momentum tensd‘f(z)" To derive the tensonf))‘
Pfirsch and Mornson[?] used the following modified
Hamilton-Jacobi formalism. Let ,(p;,q',t) be the Hamil-
tonian for particles of species for the perturbed state in a
phase spacp,....p4, 94,...,0% where ¢*,q%,q°) are gen-
dp® 5@ eralized coordinates so thatx(q',q%,g%) and correspond-

9 ingly p=p(p1,p2,P3), Wherex is the position vector in nor-

mal spacep,, q* is an additional pair of canonical variables
which is needed to describe guiding center motion. Let
(0)(P| ,Q') be the equilibrium Hamiltonian in the phase
spaceP, ,...,P,, Q1,...Q% and letS,(P;,q',t) be a mixed-
variable generatlng function for a canonical transformatlon
betweenp;, q' andP;, Q'. Thex, t dependence o,
given via electromagnetic potentiadgx,t) and A(x,t), the
electnc and magnetic fields(x,t) andB(x,t) and their de-
élvanves The quantitiep; andQ' are obtained fron$, as

—<
dx 9x ’

whereP(® is the equilibrium plasma pressure. For tokamak-

like equilibria with singly peaked pressure profiles the exis-

tence of both ion and electron perpend|cular NEP’s is asso-

ciated with the critical value§ of the quantity 7

=4InT,/dInN, (T, is the temperature and, the density

of particle specie®) which usually governs the onset of the

temperature gradient driven modes. For cylindrical equilibria

an additional regime of NEP’s exists, related to the curvatur

of the poloidal magnetic field. Also, for the case of cold-ion

equilibria (T;=0) a large portion of electrons is associated _@ ; 9S,

with NEP's (active particles Pi= aq"’ Q=
The purpose of the present paper is twofdhj:to inves-

tigate the impact of a radial electric field on NEP’s in cylin- angs, must be the solution of the modified Hamilton-Jacobi

drical equilibria of magnetically confined plasmas, dbito  equation

extend the study to equilibria witfi;#0. The method of

investigation consists in evaluating the general expression

F®) for the second-order perturbation energy within the

framework of the linearized dissipationless Maxwell-drift ki-

netic theory. This is the subject of Sec. Il. The conditions for

the existence of NEP’s are obtained in Sec. Ill. It turns outlhe time-independent, zeroth-order solutﬁ,ﬁ) of Eq. (5),

that for parallel and oblique perturbations conditi@ re- needed to obtam'(z)"“, is then simply given by the identity

mains valid, while the condition for perpendicular NEPStransformaﬂorS(o)—E P

(which remain the most Important perturbatlg)rﬂsmOded The theory can be denved from the Lagrangian

To apply the condition for perpendicular NEP’s in equilibria

of magnetic confinement systems the equilibrium equations IS 3S,

are needed, which are derived in Sec. IV. Shearless stellara- | = _2 f dqg dP ¢, (P ,qi,t){ “+H, —.q' t)

torlike equilibria are possible with local Maxwellian distri- v at 9q

bution functions, while tokamaklike and reversed-field- JS 1

pinchlike equilibria can be obtained from shifted Maxwellian - H(VO)( P, ”) } - f d3x(E2—B?). (6)

distribution functions, which imply net toroidal currents. For P

these kinds of distribution functions amtimode parameters

pertaining to the plasma edge the condition for the existencklere, dq dP=dq'...dg*dP;...dP,; ¢, are density func-

of perpendicular NEP’s is applied in Sec. V, and the effect oftions related to th@article distribution functionsf ,, and the

E on the threshold value of, is examined. In Sec. VI the latter are related to the guiding center distribution functions

impact of E on the fraction of active particles is investigated f g, by Eq.(14) below. The energy-momentum tensor can be

for shearless stellaratorlike, tokamaklike, and reversed-fieldebtained by using the Euler-Lagrange equations resulting

pinchlike analytic equilibria. Our conclusions are summa-from the variational principle

rized in Sec. VII.

4

aSV+H 95, ] =H¢ )(P 55, 5
ot aq'q R RREFTN ®

to
Il. EQUILIBRIUM AND SECOND-ORDER 5ft L dt=0, @)
PERTURBATION ENERGY !

We start with a brief outline of the Maxwell-drift kinetic (with ¢,, S,, ¢, and A the quantities to be varigedand
theory adapted to the needs of the present study. More detaidoether’'s theorem. In the context of the linearized theory,
can be found in Refl7]. one obtains
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~ ~[oS) e ) (as“) m,c
@n_ _ v S A || foof 2o Ar=A+——gb,
T E fdadp( p At | AP R~ ’ e, O
24/(0) 294(0) m,
_& 9)iL_L—+f§¢gf—w—Lm e,bi=e,d+ B+ o0 [(qH7H 2],
c AP\IP oP,oF'¥
aSM\ aH® o~ EXB
Hlpo ) | op fd~dp Ve=C g7,
v 5P| i o'?P)\ MPEI/ q B
(1) 24/(0) 1 0A B
> f(0)<0§f _iA(l)) N, EZ_V(IS_EE’ B=V XA, b=§.
v\ dgt et ) oP,aF'Y
2HO 1 Th.e.EuIer—Lagrange' equations yier_hii=v~b=v_”, and the
+HOFW oY - R guiding center velocitx=v=vy andq* as functions of, x,
VT gFNaFY) | A ke andqg*:
~ o~ 4
+8) > fdadpff’)(H(f)—H(P(Z)) )'(=v=vg,,(t,x,q4)=;* B+ 5 Eixb (10
4 vl vl
+ 1 FOE@) 70 ®) and
16w 77 '
q*=V4(t,x q“)zi ! E*.B* (11)
Here, the superscript®), (1), and (2) denote equilibrium, o m, B}, "
first-order, and second-order quantities; the tilde signifies
that the time is included, i.e., Here, E;=—V ¢, —(1/c)(dA}/dt), B,=V XA}, and B},
i o 4 . =B’-b. The momenta canonically conjugatedxand g*
@h=@"....a%=(ct,x,q%, follow from Eq. (9):
~ —~ - as, i, e, aL,
(Pi)=(Po,---:P4) =(Po.P,Pa),  CPo=—" P=Zx = ¢ A Pam =0 (12

Since Egs(12) do not contairk andg*, they are constraints
between the momenta and the coordinates. It therefore fol-
lows that Hamilton’s equations based on the usual Hamilto-
nians corresponding to the above non-standard Lagrangians
~ ~ 1 4 are not the equations of motion. To overcome this difficulty,
Ho(Pi,G ) =CPotH (P, P40 -0, Dirac’s theory of constrained dynamid®3] is applied,
which yields the Dirac Hamiltonians

(Q)=(Q°....Q% =(ct,x,Q%,

(P)=(Pg,....Ps)=(Po,p.ps), Po=const,

HY(Pi,Q)=CPytH,(Py,...P4,QY...Q%:;

- HV:ev¢:+VgV'[p_(eV/C)A:]+V4p4' (13)
dq dP=dq*dP;...dP,;; A,=(—¢,A) with A;=0; F,, is

the electromagnetic tensor; the symbl’)jl signifies covariant
derivative of the vecto€ with contravariant componen :

Particular solutions of the equations of motion following
from the Hamiltoniang13) are the constraint&l2). The dis-
tribution functionsf ,(x,q*p,p4,t) must guarantee that these
_ i constraints are satisfied. As concerns this requirement, it is
C{J—Eﬁ—J——FhC', important to note thap—(e,/c)A>=0 andp,=0 do not
q represent special values of some constants of motion. There-

where Fi-, are the Christoffel symbols; the scalar quantityf.ore' 5_funct|ons of the constramts_ are not constantg of mo-
tion either. Butf, must be proportional to such functions

] 1By i 3T F(0)( (1)
[, (‘?SV /oPi)];, which replaces d/og)LT, (aS_V /, and, at the same time, also a constant of motion. Both con-
dP;)] in Eq. (46) of Ref. [7], results from the contraction in  gitions are uniquely satisfied by
the tensof f(ssM/aP;)] ;.
The HamiltoniandH , for the guiding center motion of a . R 4
particle species, which appear irfF(®, are obtained from f,= 5(p4)5( P=< AV) Bufg(x.a% ), (14
Littlejohn’s Lagrangian formulation of the guiding center
theory[21] in the form given by Wimme[22]: where the guiding center distribution functiofig, are con-
stants of motion and solutions of the drift kinetic differential
e, . . R equations
Lv: ~ AV'X_evd)w (9)
c
of

. v 4 gV:
P +V aq° 0. (15

with ot
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In the present paper cylindrical equilibria are considered.

With the coordinates)®, g2, andq® specified to be the cy-
lindrical coordinates, 6, andz with unit basis vectorg, ,

ey, ande,, the equilibrium vector potential and magnetic

field are given by

AO=AP(r)ey+ AL (r)e, (16)
and
BO=B(r)e,+BY(r)e,, 17
with
1
FOAPY =B, (A)'=-B), (19

where the prime denotes differentiation with respect to

G. N. THROUMOULOPOULOS AND D. PFIRSCH

(0)

*
il

m

1GV12(k-v{)

FO=-3% J S(r)dr dvdu

0) (0)
(5701 ArLS &ngH
d

X
] w:<0) ar

(22

Here o’}(@=(e,B}()/(cm,), GM(r,q* u) are arbitrary
first-order quantities relating to the generating functisﬁé
for the perturbationsh’@=B*/B*(?); k=k.e,+ ke, is
the wave vector lying in magnetic surfac&s;andk, are its
components parallel and perpendiculaB@, respectively;

and
O+ (2mIrky) [ zg+ (27lKy)
S(r)Erf f do dz

%o %

The equilibrium electric field can be expressed in terms ofs a normalization surface, whe# and z, are constants.

the scalar potentiap(®)(r) as

E0— V40— (40)'e,. (19

We note thatF® depends orG(Y only via |G]2. The
first-order charge density™) is av,, u integral over an
expression that is linear iﬁ;s,l). One can therefore satisfy

For the equilibria defined above, the guiding center velocitythe relationp®=0 by a proper distribution of positive and

[Eq. (10)] becomes

0 1(0) 4 (0
Vg =0;b @+ v

*(0)
€, ||BV(L

c

c
v~ sy | €,(6©) + u(BO) -

vy

m, ,
+ = (W) |(exb?), (20

where v{?=b@x (v{?)x b(®) is the perpendicular compo-
nent ofv{?) consisting of theExB, VB, curvature, and po-
larization drifts; B}(9=B*®).p©® and B}(V=b@x (B}

xb(®). For thermal particles it holds th&}(®~B(® and

B} (9B:(O~0(ry,/ro), whererg, is the thermal Larmor
radius for the particle speciesandr, the macroscopic scale
Iength.v(o) has nor component, and thereforeis a constant

gv
of motion. Since there is also no force parallel&f’, an-

other constant of motion is the parallel guiding center veloc-

ity v,. The guiding center distribution functior{)) are
therefore functions of, v;, and the magnetic momeinpt.
From Eq.(11) it follows thatVElo)=0, and hence the Dirac

Hamiltonians[Eq. (13)] are written in the form

HY=e, 6l tvg) [p=(e,/0A ) (2D

negative values 06" on whichF(® does not depend.

Compared with the corresponding expression for equilib-
ria with E=0 [Eq. (37) of Ref.[18]], F® contains terms
stemming fromb*(®) and from theEXB and polarization
drift components of/,, . In particular, as shown in Sec. Il
the EXB drift modifies the condition for the existence of
NEP’s with wave vectors perpendicular B,

IIl. CONDITIONS FOR THE EXISTENCE
OF NEGATIVE-ENERGY PERTURBATIONS

The derivations in this section are very similar to those
concerning equilibria witiE=0 [17-19 so that details need
not be given here. The following conditions must be satisfied
only locally inr, v, and &, and refer to the frame of refer-
ence of minimum energy.

Parallel perturbations(k, =0): NEP’s exist when

af(o)

gv

NULEN
U1 Gy, 0

(23

is satisfied for at least one particle species. This condition,
which was first derived by Pfirsch and Morrison for a homo-
geneous magnetized plasifid, agrees with those obtained
by Correa-Restrepo and Pfirsch for several Maxwell-VIasov
equilibria[8-12].

The general expression for the second-order perturbation Oblique perturbations(k;#0 and k, #0): If condition
energy[Eq. (3)] is evaluated for these equilibria and for ini- (23) is satisfied for at least one particle speciesnly per-

tial perturbationsA®®=0 and A®=0. It is also showna

posteriori that one can choose initial perturbations such tha
the charge densitp(*) vanishes without changing the par-
ticle contributions to the energy. Thus, choosing perturba-

tions of this kind, we can set from the outsef})=Al"
=0.

After a lengthy derivation, which can be conducted along

the lines of that for cylindrical equilibria witE=0 reported
in detail in Appendix A of Ref[19], F(® is cast in the
concise form

turbations with wave vectors satisfying in addition the rela-
tions

k k
—"<min(A,,,MV) or —”>ma>(AV,MV),
Ky Ky

(24)

with

(0>L
A== (e xb®)
[
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and (0) *(0) 1£(0)
0 :afgv_ «(0) Bl dfg,
14

w 1
ar v B:io) Jv I

(32)
V= 1 afgov)_ B*(® afé?)(afé"))‘l
ey o BYY auy | vy ) where W,, = uB(® is the perpendicular particle energy.

_ _ Equation(30) implies thatF(?)<0 for any k. whenever the
can have negative energy. The orders of magnitudd of  :ondition

and M, depend on the particle energy. For example, if

Z,Q,<0 (33
m,vf~uB®~le,¢|~T,, 2 . . ©
is satisfiedirrespective of the sign of (dfy,/dv). There-
with ¢(«)=0, it holds that fore, there are two regimes of NEP’s which are determined
by the relations
r 14
|Ay|w|MV|~ri<1. (26) Z,<0
0
_ o . i and
Relation(26) indicates that conditiof24) imposes no essen-
tial restriction on the magnitude or the orientation of the Q,>0 (34)
wave vectors associated with NEP’s.
If and
5 féo) Z,>0
(2} (90” <0, (27) and
Q,<o0. (35

a condition which is satisfied at all points of a Maxwellian

distribution function, NEP’s exist if, in addition to EQR7),  For the evaluation of conditiont34) and (35) the equilib-
it holds that rium equations are required, which are constructed in Sec.
K V.
min(A,,M,)<—<maxA,,M,). (29)
k, IV. QUASINEUTRAL MAXWELL-DRIFT

_ - o KINETIC EQUILIBRIUM EQUATIONS
For the scaling25), condition(28) implies that

The equilibria must satisfy
LTI 29 V.EO=47p© 36)
k. T
and

which indicates that the most important NEP’s, in the sense
that the less restrictive conditigi27) is involved, are asso-
ciated with nearly perpendicular wave vectors. It may be
noted that for a homogeneous magnetized plasma in thermal
equilibrium, although conditiori27) is satisfied, NEP’s are Where the charge densiy® and current density® are
not possible becaus® ,=A ,=0 and therefore condition expressed self-consistently in terms of the guiding center dis-
(28) is not satisfied. This also follows from conditiqg@3) tributions functionsf(ov) in the context of the Maxwell-drift
which is pertinent for the existence of NEP’s in a homoge-kinetic theory[see Eqgs(8.14) and (8.15 of Ref. [24]]. For
neous magnetized plasma and is not satisfied in thermal equihe system under consideration, owing to the presence of

41
VxB(O):TJ‘(O), (37)

librium, i.e., for Maxwellian distribution functions. E©), the set of equilibrium equations following from Egs.
Perpendicular perturbationgk,=0): In this case the (36) and(37) are rather complicated. For this reason we em-
second-order perturbation enerdyg. (22)] reduces to ploy the quasineutral Maxwell-drift kinetic theory which can

be derived self-consistently by dropping the electric-field-
energy term in the Lagrangia(®). A similar method was
employed in Refs[14,20,25. Consequently, Eq(36) is re-
placed by the quasineutrality condition, which is explicitly
given by

Z e,,f dUudMB:ﬁO)f(gov)

F(Z):4172 f dr dU”d,LL S(r)|G(vl)|2

B:\(\O) WVL kl ZZ 30
m]Z} (B(O))Z w:(O) VQVY ( )

m,C
. *(0)¢(0 0 0
+> dIvJ dv,duB’ )f(gy) BT’:))(VE;V)—V(E))Xb(O)
14

m, ,
_U”B;io)—ev(;b’_ﬂ(B(o))/_?(U(EO)Z) }
(31) -0, a8

and and Eq.(37) by
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*(0)£(0),,(0
S e, | dvauBi 019V
14

_EV: c curl deudMB:fo)f(g?[Mb(o)_ B(g) Uu(V(g%
m,c
0 v 0 0
_V(E ))_ (B(O))Z (V(gv)_v(E ))XE(())
2m
v 0 0 0

+ BO {(Véy)_V(E>)'VEE "tb(©@

¢ ©
= o vV xB'™. (39

The first terms on the left-hand sides of E¢38) and (39)

G. N. THROUMOULOPOULOS AND D. PFIRSCH

and

, by _,
jz=beiNi(Vi=Ve)—c = P'=

ClB’ 45
B _EF(rﬂ)i()

where

P=> JdquMB;WBfng N,T,. (46)

ForV,=0 for all », Egs.(44) and(45), respectively, reduce
to

represent guiding center charge and current density contribu-

tions, respectively, and the other terms polarization and mag-

netization contributions. We consider equilibria of the fol-
lowing kinds.
(1) The distribution functions are specified to be local
shifted Maxwellians,
1/2 N(O)(r)

mV
2 T(O)(r)3/2

xexp{ -

whereN(©® and T{?) are, respectively, the density and tem-
perature for particles of species They can describe cylin-
drical tokamaklike, reversed-field-pinchlike, and, fot®

0)_
fio)=

pBO(r)+1/2m,[v,— VO (r)]?
T(r) ’
(40)

=0, shearless stellaratorlike plasmas, which are close tﬁ,]

thermal equilibrium. For the former equilibria the shift ve-
locities V(%) satisfy

V(O

14

r
(U V)th

(41)

bzP,_ B, A
B 4w (47
and
by P’ ! B, 48
BFP = EF(r 0) (48

The solutions of Eqs(47) and (48) satisfy the relatiorB,
=a(B,/r), with a=const. They are singular at=0 and
thereforea=0. For B,=0, Eq. (48) is satisfied identically,
and the only possible equilibrium, which is described by Eq.
(47), is a 6-pinch or shearless stellaratorlike configuration
with vanishing axial current, a case which is examined in
Sec. VI. Multiplying Egs.(44) and (45) by the integrating
factors B, and B,, respectively, and adding the resulting
equations, one obtains the pressure balance relation

d 52) B

dr * 8 * =0,

P 4ar

(49

which will be used in place of Eq45).

Summarizing, quasineutral equilibria can be described by
e set of Eqs(43), (44), (46), and(49). Four out of the eight
functions involved must be assigned, eB(r), B,(r), the
shift velocity differenceV;(r) —Ve(r) andT,;(r); thenB,(r)

can be obtained from Ed49), N;(r) from Eq. (44), Ng(r)
from Eq. (43), andT¢(r) from Eq. (46). Analytic solutions,
which are required for determining the portion of active par-
ticles in equilibria of magnetic confinement systems, are con-

and, as shown later, lead to a nonvanishing “toroidal cur-trycted in Sec. VI.

rent.”
(2) Since aradial electric field may play a role in theH
transition of magnetic confinement systems, e.g., Ré#,
[27], for the ion electrostatic energy we adopt the scaling
e 0=,

$0(2)=0, (42

which is satisfied in the edge region.

V. PERPENDICULAR NEP’s IN EQUILIBRIA
OF MAGNETIC CONFINEMENT SYSTEMS

In this section conditiort33) for the existence of perpen-
dicular NEP’s is applied to the equilibria defined in Secs. Il
and IV. For distribution functions of the forr#0) and the
pressure balance relatiad9), the quantityQ, [Eq. (32)]

Using the above assumptions, neglecting small terms ofeduces to

the order, /ry and suppressing the superscii@t from the
equilibrium quantities, E¢(38) and thed andz components
of Eq. (39), respectively, yield

> eN,=0, (43)

c

bZ,
B' 4

j9=b9eiNi(Vi—Ve)+C B B;, (44)

N/ 0
QV_N_V Uv= (5 )
where
Uvzl_%_l—nvslv_l— €21, (51)
€,= W 1+ W (52
e TV WVL ,



56 NEGATIVE-ENERGY PERTURBATIONSN . .. 5985

N 4ar WVJ_ NV R 53 . BZ / 58
=g T, N R 53 T T, &0 &9
and Condition (33) then becomes
R,=P'+ — ‘ 112V 54 e,d' N, U,>0 (59)
v At WVL ( ) v N,, v .

Depending on the value & /T,, the effect ofE on perpen- Relation (59) shows that the existence of perpendicular
dicular NEP’s is examined in the following two regions. ~ NEP’s depends on the sign of the particle species charge and
the polarity ofE. Henceforth and up to Sec. VI €0 will
_ 2 refer to this caseT;/T.>B;). In the edge region the radial
A TilTe<pe=PI(B/8m) electric field is usually negativi6,27,. It is noted here that
Assuming the scalin¢42) to hold it can be shown that the the impact of the polarity of an externally induced radial
pressure gradient and a term relating to the curvatuB,0of electric field was investigated experimental®8]. It was

dominate inZ,, i. found that whereas the energy confinementimodes with
2 E>0is at least as good as in those Wihk<0, the ratio of the

7 ~p'+—2 142 Wi -R (55) ion confinement time to the energy confinement time is about

v A W, v three times lower in the former case. We examine therefore

in the following NEP’s for ions and electrons in equilibria
Condition (33) can be put into the form with ¢'>0.
]/} 1. lons

R, N U,<0. (56) In this casee, ¢’ is positive, and conditiori59) is satis-

fied whenevetJ;<0. Depending on the sign &, there are
Relation (56) is identical to the corresponding one in equi- two reg|mes of NEP’s(a) If R;<0, U;<0 is satisfied when-
libria with E=0 [relation (58) of Ref. [18]]. For singly —evers;>3%, and(b) if R;>0, no restriction is imposed o, .
peaked density and the temperature profiles, and therefoleis pointed out, however, that fdé=0 the condition asso-
n,>>0 for all v, which is the most common case in equilibria ciated with this second regime $;>0. As shown in Sec.
of magnetic confinement systems, there are two regimes dfl, this difference affects the fraction of active ions.
NEPs depending on the sign Bf, [Eq. (54)].

2. Electrons
1.R,<0 Condition (59) is satisfied whenevdd .>0. This yields
Condition (56) implies thatU,<0 must hold. The last
two terms ofU, [Egs.(51)—(53)] become non-negative and Ne<3(1+ Ne€iet €2¢). (60)
vanish forw,—0 andW,, —0. ConsequentlylJ ,<0 is
satisfied whenever For cold electrongWg—0 and W, —0), condition (60)
implies that NEP’s exist whenever,< . This indicates that
7,>5. (57 E has a "stabilizing” effect on electron NEP’s for large

values of 5,. Owing to hot electrons, however, condition
The existence of perpendicular ion NEP’s for aky is  (60) does not yield an upper threshold valuepf because
therefore related to the threshold valueobf the quantity ~ €lectrons with nonvanishing energy activate NEP's in the
n,. As discussed in Ref17], this threshold value is sub- regime wherep.>%. To determine the value of, for which
critical in the sense that it is lower than the critical valuehalf of the electrons are active, conditi¢80) is written in
n°~1 for linear stability of temperature-gradient-driven the form
modes.
—e” +D >—— hd (62)
2. R >0 Ce(r) e(r ) g
The condition for the existence of perpendicular NEP’s
becomedJ,>0. In this case the quantity,e,,+ €5, can be
either positive or negative, and therefore no restriction is
imposed onyz, . It may be noted that for plane equilibria it
holds thatR,=P’'<0 and therefore the second regime of
NEP’s is associated with the curvature®f.

where

and
B. T;/T>B.

2
If the scaling(42) holds, the terme, ¢’ related to the De(r)z[lJrA'_WE ( pr+ﬂ)] (62)
EXB drift dominates inZ, [Eq. (31)], i.e., 4r
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For a magnetic confinement system, it holds tﬁle
~P/(B2/87)=p, with max 8~0.1, and therefor& ,~D,
~1. Consequently, conditiof61) implies that nearly half of
the electrons are active whenever it holds that-312,
~2  This yields

Ne=3. (63)
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(2) The portion of active ions increases from the center
p=0 to the edge regiop=1.

2. Electrons

For E=0, the situation is similar to the foregoing one for
ions. ForE#0 the condition for the existence of electron
NEP’s isU.>0, and therefore the fractions of active elec-
trons and ions are complementary to each other. Thus, as

Therefore, ifE#0, less than half of the electrons are active 554 discussed in Sec. V, the electric field stabilizes electron

whenever 5> ng, and this portion decreases as takes
larger values. On the other side,B=0, more than half of
the electrons are active whenever> 72, with this portion
increasing agy, takes larger values.

VI. ANALYTIC EQUILIBRIUM SOLUTIONS
AND ACTIVE PARTICLES

In this section the portion of active particles is determined
on the basis of analytic shearless stellaratorlike, tokamaklike,

and reversed-field-pinchlike equilibrium solutions.

A. Shearless stellaratorlike(@ pinch) equilibria
We consider the following profiles:

P=P(0)(1-p?), (64)

N;=N;(0)(1-p?¢ and T,;=T;(0)(1—p?* ¢ where p

=r/ry, andrg corresponds to the plasma surface. Equations

(49 with B,=0, ~,e,N,=0, andP=3 N,T,, then yield

B,= 520[1_130(1_[’2)]1/21 (65)

j =VB.,X e=— % B P e

: ro "0 [1=Bo(1-pH)]7 ™"
Ne=Ng(0)(1—p?)¢ and T,=T.(0)(1—p?)* ¢. HereB, is
the external constant ‘“toroidal” magnetic fieldB,
=P(0)/(B%/87), and the parametef (0<é<1) determines
equilibria with different values of;,, i.e.,

_aInT, 1-¢

lon and electron NEP’s are now examined separately.

1. lons

NEP’s for >3, e.g., for the equilibrium profile$64)—
(66), one-third of the thermal electrons are active whgn
=2, while the corresponding fraction for the equilibrium
with E=0 is 4. In addition, the fraction of active electrons
decreasedrom the center to the edge. This indicates that in
the presence oE self-sustained turbulence associated with
electron NEP’s should be reduced in the edge.

B. Tokamaklike (screw pinch) equilibria

The following profiles correspond to a special solution of
Eq. (49):

B,=[B7(0)+87P(0)(1-a?)p?]*?, (68)
where « is a parameter which describes the magnetic prop-
erties of the plasma, i.e., the plasma is diamagnetierfof

and paramagnetic fag>1,;

B,=2J7P(0)ap

is the constant axial current density;,=N,(0)(1—p?)¢;

and T,=T,(0)(1—p? 1 ¢, with v=i,e. lon and electron
NEP’s are now examined fay,= 1, which is close to linear
stability threshold for gradient temperature driven modes.

(69

1. lons

For E=0 the portion of active ions is determined by con-
ditions (34) and (35) which, respectively, become

Since the magnetic field lines are straight, it holds that d

R;=P’<0, and therefore that ion NEP’s exist only in equi-

libria with %;>%. The pertinent conditiot); <0 becomes

3 1

Wi,

m+ 1+ (1-p?)
T, 20-¢ P T T2y

(67)

Relation(67) implies the following.
(1) The portion of active ions increases gstakes larger

values. In particular, for a flat temperature and peaked den-

sity profile there are no active ions; fay,=1, one-third of
the thermal ions are active, and fgf=2 this fraction be-

W, 1(2 )
W, 2\
and
W, w, 1
[1-3B(1-p?)(a?~2)] 7 +[1-Ba*(1-p?)] =<5
(70
w, 2\a2 !

and

W, W, 1
[1-3B(1-p?)(a?~2)] = +[1-Ba’(1-p?)] = >5.
(7D

Relations(70) and (71) imply the following.

comess3; for a flat density and a peaked temperature profile (1) The portion of active ions increases with i.e., it is

(nj—), all ions are active;

smaller in a diamagnetic system and larger in a paramagnetic
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Wi
T;
1
2
a = 0
% (O,O) 1 %J_
“ 2ba(1) T;
Wy
T;

FIG. 3. The portion of active ions for the equilibrium of a para-
magnetic plasma witkE=0 and ».= 1, which is deduced from Eq.

FIG. 1. The portion of active ions for a strongly diamagnetic
b gy dAMAINELC 1) b, (p)=1-28(1—p?)].

plasma withE=0 and 7;=1 which is deduced from Eq(70)
[ag(p)=1+B(1—p?)]. The dotted area stands for the active par-
ticles at the centetp=0), while the area filled by circles for the
additional active particles at the edge=1).

(1) The portion of active ions is nearly independent of the
magnetic properties of the plasma; it is approximatgfpr
any value ofa.

system. The particular cases of a strongly diamagnetic (2) The portion of active ions can either be nearly |2nde—
plasma(a—0), of an equilibrium with constant “toroidal” Pendent ofp, e.g., for an equilibrium with constarf, (a
magnetic field ¢2=1), and of a paramagnetic plasma?( = 1) (Fig. 4 or d(_acreases from the center to the edg_e, e.g.,
=2) are illustrated in Figs. 1, 2, and 3, respectively. Thefor @ paramagnetic plasme =2 (Fig. 5), while this portion
fractions of active ions are nearlyfor «—0, 1 for a2=1, always increases for equilibria wita=0.
and 2 for a?=2. It is noted that fora—0 only the branch ThusE leads to a reduction of active ions.
(70), associated with the threshold valge= %, contributes,
while for a?=2 exclusively the brancti71) associated with
the curvature of the poloidal field lines contributes. Recalling that the portion of active electrons is the same
(2) In all regimes the fraction of active ions increasesas that of active ions wheB=0, and complementary when
from the center to the edge. In Figs. 1, 2, and 3 the dotte@E+#0, respectively, the former portion can be determined on
area stands for the active particles at the cefitei0), while  the basis of the foregoing analysis for ions. Thus, in addition
the area filled by circles for the additional active particles atto the stabilizing effect oE for 7.>3, the fraction of active
the edge(p=1). electrons(a) becomes nearly independent of the magnetic
It is noted here that foE=0 similar results hold for elec- properties of the plasma, arit) can decrease from the cen-
trons. ForE+#0, active ions obtain from conditiotd;<<0 ter to the edge, e.g., for the most common case of a diamag-

2. Electrons

(irrespective of the sign dR;), which leads to netic plasma.
1 W, iRl ) .
1-= ,B(l—pz)(az— 2) A C. Reversed-field-pinchlike(force-free) equilibria
2 Ti The solution of Eg.(49 with P'=0 leads toB,
W 1 =B,(0)Jo(p) and By,=B,(0)J.(p), whereJ, and J, are
+[1-Ba¥(1—p?)] —2<=. (720  Bessel functions. These profiles satisfactorily describe the
T 2 central region of the relaxed state of a reversed-field pinch
Relation(72) implies the following.
W,
T
1
T
Lk
210 [ 9 Wi = 3Wis
..... 1 W,
O 2b1(0) T,u
(0»0) 1 W;
(1) T,u FIG. 4. The portion of active ions for the equilibrium wi-0,

7;=1 andB,=const, which is deduced from E{72) [ a4(p)=1
FIG. 2. The portion of active ions for the equilibrium wiih=0, +(B12)(1—p?), by(p)=1— B(1—p?)]. The excess portion at the
7;=1, andB,=const, which is deduced from Eq&0) and (71) edge indicated by circles nearly compensates for the excess portion
[ay(p)=1+(B12)(1—p?), bi(p)=1—B(1-p?]. at the center indicated by stars.
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tion for perturbations with wave vectors parallel and oblique
to the equilibrium magnetic fieldk(#0): If the equilibrium
guiding center distribution functiof{>)(r,v, ,x) of any spe-
cies v satisfies the relation(9f())/dv;)>0 locally inr, v,
and u, parallel and oblique NEP’s exist with no essential
restriction onk. The condition for the existence of perpen-
dicular NEP’s k;=0), which holds regardless of the sign of
v(9f/av), is modified. Forle;¢|~T; the effect ofE on
perpendicular NEP’s depends on the valud ofT,, i.e.,(a)
for T;/T.<B.~P/(B%8w), the electric field has no effect;
and(b) for T;/T.> B., a case which is of operational inter-

FIG. 5. The portion of active ions for a strongly diamagnetic St in magnetic confinement systems, the existence of per-
plasma with E#0 deduced from Eq.(72) [as(p)=1-28(1 pendicular NEP’s depends on the sign of the particle species
—p?)]. The area filled by stars represents the excess portion at theharge and the polarity d [relation (59)]. For E<0, we
plasma center. found the following.

(1) For cylindrical tokamaklike equilibria described by

[29]. By appropriately assigniny;(r) —V,(r), one can de- |ocal shifted Maxwellian distribution functions and singly
rive equilibria with a variety of density and temperature pro-peaked pressure profiles, there exist two regimes of NEP’s
files for which NEP’s exist and a considerable fraction Offor both ions and electrons. One regime is associated with

active ions and electrons are involved. From the equilibriahe curvature of the poloidal magnetic field. In the other
considered it turns out th&t (a) does not affect the electron regime the threshold value 2/3 of=d In T,/9In N; is in-

NEP’s, and(b) enhances the_fraction of active ions. __volved for ion NEP’s, as in equilibria wittE=0, while a
_ As an example, we consider the most Comrr,‘on_eq“'“b'critical value of 7, does not occur for the existence of elec-
rium with constant density and temperature profiles: tron NEP's. HoweverE has the following “stabilizing” ef-
_ _ fects on both particle species:
N,=N,q, T,=T,. 73 . - . . .

v 0 0 73 (@) The portion of particles associated with NERagtive
particleg is nearly independent of the plasma magnetic prop-
erties, i.e., it is nearly the same in a diamagnetic and in a
paramagnetic plasma, while in equilibria w0 this por-
tion is much larger in a paramagnetic than in a diamagnetic
plasma.

For E=0, with the aid of relation(55), condition (33) be-
comes

B? : : . .
Wi Bs 142 W <0 74 (b) The portion of active particles can be either constant
T,o pB? w 74 i
vo P L or decreases from the center to the edge, e.g., in the case of

active electrons of a diamagnetic plasma, while it always

for any particle species. Therefore there are neither ion nor increases in the corresponding equilibria witk-0.
electron NEP's. In particular, the fraction of active electrons decreases

If E#0, NEP’s exist whenever the condition with increasingy, and for 7,> 7o~ 3 the electric field sta-
bilizes electron NEP’s in the sense that the fraction of active
electrons becomes smaller than the one corresponding to
equilibria with E=0.

(2) In shearless stellaratorlike equilibria described by lo-
cal Maxwellian distribution functions and pressure profiles
identical to those of tokamaklike equilibrig, leads to simi-

following from relations(33) and(58), is satisfied. Owing to lar stabiljzing effegts on electron NEP’s, that i45, it reduces
the presence of the particle species charge in condigy ~ the fraction of active electron&) for 7> 70~73 and (b)

for ¢'>0 all ions are active, while the active electrons are/T0m the center to the edge.
not affected. In addition, irrespective of the value ®f /T, E does not

affect electron NEP’s in reversed-field-pinchlike equilibria,
but “destabilizes” the ion NEP’s in the sense that it en-
hances the portion of active ions. For example, for an equi-
The impact of a radial electric field on negative-energylibrium with constant density and temperature profiles all
perturbations(NEP’s) in cylindrical equilibria of magneti- ions are active in the presence Bf while there are not
cally confined plasmas was investigated within the frame-active ions wherE=0.
work of linearized dissipationless Maxwell-drift kinetic ~ The present results indicate that a radial electric field
theory. The investigation consisted in evaluating the generdkads to a reduction of NEP activity in the edge region of
expression for the second-order perturbation energy derivetbkamaks and stellarators. For electrons, which may mainly
by Pfirsch and Morrison for the equilibria under consider-contribute to anomalous transport, this reduction is more pro-
ation and for vanishing initial-field perturbations; then thenounced.
conditions for the existence of NEP’s were obtained. Finally, it may be noted that according to the results of
The electric fieldE does not affect the following condi- our previous wor18,19 and in the present study, the cur-

e, Bj
TVO sz

W,
WVJ_

<1+2 )>o, (75)

VII. CONCLUSIONS
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